Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone.
نویسندگان
چکیده
In recent years, the important role of the organic matrix for the mechanical properties of bone has become increasingly apparent. It is therefore of great interest to understand the interactions between the organic and inorganic constituents of bone and learn the mechanisms by which the organic matrix contributes to the remarkable properties of this complex biomaterial. In this paper, we present a multifaceted view of the changes of bone's properties due to heat-induced degradation of the organic matrix. We compare the microscopic fracture behavior (scanning electron microscopy; SEM), the topography of the surfaces (atomic force microscopy; AFM), the condition of bone constituents [X-ray diffraction (XRD), thermogravimetric analysis (TGA), and gel electrophoresis], and the macromechanical properties of healthy bovine trabecular bone with trabecular bone that has a heat-degraded organic matrix. We show that heat treatment changes the microfracture behavior of trabecular bone. The primary failure mode of untreated trabecular bone is fibril-guided delamination, with mineralized collagen filaments bridging the gap of the microcrack. In contrast, bone that has been baked at 200 degrees C fractures nondirectionally like a brittle material, with no fibers spanning the microcracks. Finally, bone that has been boiled for 2 h in PBS solution fractures by delamination with many small filaments spanning the microcracks, so that the edges of the microcracks become difficult to distinguish. Of the methods we used, baking most effectively weakens the mechanical strength of bone, creating the most brittle material. Boiled bone is stronger than baked bone, but weaker than untreated bone. Boiled bone is more elastic than untreated bone, which is in turn more elastic than baked bone. These studies clearly emphasize the importance of the organic matrix in affecting the fracture mechanics of bone.
منابع مشابه
P-181: Protective Role of Vitamin E As An Alternative Treatment for Ovariectomized Osteoporotic Rats
Background: Osteoporosis one of the postmenopausal symptoms is characterized by bone loss. There is a link between excessive reactive oxygen species (ROS) formation, estrogen deficiency due to cessation of ovarian function and bone loss. Free radicals are responsible for causing osteoblast apoptosis and reducing osteoblastogenesis in bone remodeling. Vitamin E is a potent antioxidant with the a...
متن کاملMandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis
Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since Panoramic image is a feasible and relatively routine imaging technique in dentistry; it could provide an opportunistic chance for screening osteoporosis. In this regard, numerous...
متن کاملFabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering
Background: engineering new bone tissue with cells and a synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). Methods: in this study, to mimic the mineral and organic component of natural bone, hydroxapatite (HA) and gelatin (GEL) composite scaffolds were prepared. The raw mater...
متن کاملHeterotopic Ossification around the Knee after Internal Fixation of a Complex Tibial Plateau Fracture Combined with the Use of Demineralized Bone Matrix (DBM): A Case Report
Demineralized bone matrix has been successfully commercialized as an alternative bone graft material that not only can function as filler but also as an osteoinductive graft. Numerous studies have confirmed its beneficial use in clinical practice. Heterotopic ossification after internal fixation combined with the use of demineralized bone matrix has not been widely reported. In this paper we de...
متن کاملNon-Enzymatic Glycation is Associated with Markers of Bone Quality in Human Cortical and Cancellous Bone
Factors other than low bone mass, such as changes in bone quality, may contribute to fracture risk. Non-enzymatic glycation alters bone’s organic matrix [1] and creates collagen crosslinks, collectively termed advanced glycation end products (AGEs) [2]. AGEs accumulation with age stiffens bone's organic matrix, ultimately leading to fracture [3]. Cell culture work in animal models shows increas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bone
دوره 35 5 شماره
صفحات -
تاریخ انتشار 2004